LE	SSON PLAN O	F 3 RD SEMESTER(2022-23) CIVIL ENGINEERING
Discipline :- CIVIL	Semester:-3 RD	Name of the Teaching Faculty KAPILENDRA KUMAR SETHY
Subject:- STRENGTH OF	No of Days/per Week Class Allotted :-04	Semester From:- <u>15/09/2022</u> To:- <u>22/12/2022</u> No of Weeks:- 15
MATERIAL		
Week	Class Day	Theory/ Practical Topics
	1 st	1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram
1 st	2 nd	1.2 Review of CG and MI of different sections
	3 rd	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity,
	4 th	Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability
2 nd	1 st	Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains
	2 nd	Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants
	3 rd	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality
	4 th	Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight
3 rd	1 st	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses
	2 nd	 Stresses In Beams and Shafts 3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure– Flexural stress distribution – Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus
	3 rd	3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis.
	4 th	3.3 Stresses in shafts due to torsion: Concept of torsion, basic assumptions of pure torsion, torsion of solid and hollow circular sections, polar moment of inertia, torsional shearing stresses,
	1 st	angle of twist, torsional rigidity, equation of torsion
4 th	2 nd	3.4 Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections, Conditions for no tension,
	3 rd	Limit of eccentricity, Middle third/fourth rule, Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining walls

	4 th	4.1 Columns and Struts, Definition, Short and Long columns, End conditions Equivalent length / Effective length, Slenderness ratio, Axially loaded short
eth	1 st	 and long column, Euler's theory of long columns, Critical load for Columns with different end conditions
5 th	2 nd	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support
	3 rd	Problem practice
	4 th	Problem practice
6 th	1 st	5.1 Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction,
	2 nd	Problem practice
	3 rd	5.1 Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium
	4 th	Problem practice
7 th	1 st	5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M,
	2 nd	5.2 S.F and B.M of general cases of determinate beams with concentrated loads and udl only,
	3 rd	Problem practice
	4 th	Problem practice
8 th	1 st	5.2 S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.
	2 nd	Problem practice
	3 rd	Problem practice
	4 th	Problem practice
9 th	1 st	6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection
	2 nd	Problem practice
	3 rd	Problem practice
	4 th	Problem practice
10 th	1 st	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	2 nd	Problem practice
	3 rd	Problem practice
	4 th	Problem practice
11 th	1 st	7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever
	2 nd	fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span)
	3 rd	Problem practice
	4 th	Problem practice
12 th	1 st	8.1 Introduction: Types of trusses, statically determinate and indeterminate trusse
	2 nd	Problem Practice
	3 rd	Problem Practice
	4 th	Problem Practice
13 th	1 st	8.1 degree of indeterminacy.
	2 nd	Problem Practice

	3 rd	Problem Practice
	4 th	Problem Practice
14 th	1 st	8.2 stable and unstable trusses, advantages of trusses
	2 nd	Problem Practice
	3 rd	Problem Practice
	4 th	Problem Practice
15 th	1 st	8.2 Detailed explanation of advantages
	2 nd	8.2 Detailed explanation of Disadvantages
	3 rd	PREVIOUS YEAR QUESTION DISCUSSION
	4 th	REVISION